distance entre atomes de carbone et d'oxygène est supérieure à 3,3 Å.

Le code de symétrie est explicité dans le Tableau 3.

Discussion

La pentacoordinence de l'argent(I) a aussi été mise en évidence dans des composés récemment étudiés tels que $Ag_3P_3O_9$. H_2O (Bagieu-Beucher, Durif & Guitel, 1975). Dans celui-ci où, d'ailleurs, seuls deux atomes d'argent sur trois possèdent cette coordinence, la distinction entre liaisons Ag-O courtes et longues est moins nette que dans le méthanesulfonate d'argent. Les valeurs extrêmes des distances des liaisons Ag-O que nous obtenons, 2,341 (5) et 2,628 (5) Å, sont très proches de celles trouvées par ces auteurs: 2,333 (8) et 2,645 (6) Å.

Le groupement méthanesulfonato, quant à lui, se manifeste dans le méthanesulfonate d'argent(I) comme

agent pentacoordinant alors qu'il n'est que tricoordinant dans le méthanesulfonate de calcium. Il résulte de la détermination de ces deux structures que dans les méthanesulfonates métalliques cristallisés anhydres, le groupement méthanesulfonato peut coordiner le métal de manière variée en utilisant diversement ses atomes d'oxygène.

Références

- BAGIEU-BEUCHER, M., DURIF, A. & GUITEL, J. C. (1975). Acta Cryst. B31, 2264–2267.
- CHARBONNIER, F., FAURE, R. & LOISELEUR, H. (1975). J. Appl. Cryst. 8, 694–695.
- CHARBONNIER, F., FAURE, R. & LOISELEUR, H. (1977a). Acta Cryst. B33, 1478-1481.
- CHARBONNIER, F., FAURE, R. & LOISELEUR, H. (1977b). Acta Cryst. B33, 1845-1848.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Acta Cryst. (1977). B33, 2826–2832

Etude Structurale et Energétique à l'Etat Cristallin d'un Composé Mésomorphogène: le (Méthoxybenzylidèneamino-4')-4 Cinnamate d'Ethyle

PAR M. COTRAIT

Laboratoire de Cristallographie et de Physique Cristalline associé au CNRS, Université de Bordeaux I, 351 cours de la Libération, 33405 Talence, France

ET M. PESQUER

Laboratoire de Chimie Physique A, ERA nº 312 du CNRS, 351 cours de la Libération, 33405 Talence, France

(Reçu le 17 février 1977, accepté le 10 mars 1977)

The crystal structure of a mesomorphic compound, ethyl 4-(4'-methoxybenzylideneamino)cinnamate, has been solved. It crystallizes in space group $P2_1/c$ with a = 6.629 (3), b = 7.923 (4), c = 32.021 (7) Å and $\beta = 99.73^{\circ}$. The crystal packing makes the two phenyl rings nearly coplanar and the C-CH=N-C central group non-planar. Molecules are oriented approximately along a unique direction. Crystal cohesion results from numerous weak van der Waals forces and dipole-dipole interactions between antiparallel, and quite close COO groups. An energy calculation shows the dipole-dipole forces alone to be as high as 7.9 kcal mol⁻¹.

Introduction

Il existe certainement des corrélations, d'une part entre l'arrangement et les interactions moléculaires dans la phase cristalline de composés mésomorphogènes et, d'autre part l'existence et la nature d'une phase mésomorphe. C'est pour les mettre en évidence que nous avons choisi d'étudier les structures cristallines de trois séries de composés dont certains termes présentent des propriétés nématiques et/ou smectiques suivant la longueur et la ramification de leur chaîne alkyle R:

- Celle des *p*-méthoxy-*p'*-alkyltolanes dont certains termes présentent des propriétés nématiques. Les structures cristallines des deux premiers termes (R =CH₃ et $R = C_2H_5$), désignés ici par TL1 et TL2, ont été déterminées (Cotrait, Destrade & Gasparoux, 1976).

- Celle des acylalkyldihydrophénanthrènes pouvant présenter une phase nématique et/ou smectique. Les

2826

structures des dérivés avec R CH,-CH-= $(CH_{2})-CH_{2}-CH_{3}$ (smectogène), R =C_,H_, (nématogène) et $R = C_4 H_9$ (nématogène et smectogène) désignés ici respectivement par DHP1, DHP2 et DHP3 ont été totalement résolues pour DHP1 (Cotrait, Destrade & Gasparoux, 1975) et DHP3 (Cotrait & Marsau, 1976), et partiellement pour DHP2 (Cotrait, 1975).

-Celle, enfin, des (méthoxybenzylidèneamino-4')-4 α -alkylcinnamates d'alkyle de formule générale:

$$CH_{3}-O-\overbrace{\varphi_{1}}^{R}-CH=N-\overbrace{\varphi_{2}}^{R}-CH=C-O-R'.$$

Dans un précédent article (Cotrait, Sy & Ptak, 1975) nous avons présenté la structure du composé nématogène correspondant à $R = CH_1$ et $R' = C_1H_2$: le (méthoxybenzylidèneamino-4')-4 méthylcinnamate de propyle ou MBAMCP. Nous examinons ici celle du composé avec R = H et $R' = C_2H_3$: le (méthoxybenzvlidèneamino-4')-4 cinnamate d'éthyle ou MBACE. Ce corps présente les transitions suivantes:

cristal
$$\xrightarrow{109\,^{\circ}\text{C}}$$
 smectique $\xrightarrow{118\,^{\circ}\text{C}}$ nématique $\xrightarrow{140\,^{\circ}\text{C}}$ liquide,

d'après les travaux de Leclercq, Billard & Jacques (1970) d'une part, et Grav & Harrison (1971) d'autre part. La structure cristalline a été déterminée pour obtenir la géométrie de la molécule et étudier les interactions existant dans la phase cristalline. Nous avons ensuite calculé la répartition des charges atomiques partielles par la méthode CNDO/2 et tenté une approche énergétique du problème. La numérotation des atomes de la molécule de MBACE est identique à celle adoptée pour celle de MBAMCP en ce qui concerne les atomes C, N et O; elle est représentée sur la Fig. 2.

Partie expérimentale

Des monocristaux de MBACE nous ont été fournis par M. Ptak du Centre de Biophysique Moléculaire d'Orléans. Ils se présentent sous la forme de très minces plaquettes jaunes. Ils sont moins sensibles à la lumière et à l'irradiation par les rayons X que les cristaux de MBAMCP.

Les données cristallines sont les suivantes: groupe spatial $P2_1/c$ (Z = 4); $a = 6,629 (\pm 0,003), b = 7,923$ $(\pm 0,004), c = 32,021 \ (\pm 0,007) \text{ Å et } \beta = 99,73^{\circ}; V =$ 1627 Å³; $d_c = 1,227$ g cm⁻³ (notablement plus élevée que pour MBAMCP où $d_c = 1,174 \text{ g cm}^{-3}$).

Par suite de la décroissance rapide des intensités avec l'angle θ de Bragg, seules les réflexions avec $\theta <$ 50° (environ 2400) ont été collectées avec un diffractomètre Siemens pour la raie $K\alpha$ du cuivre ($\lambda = 1,5418$ Å). Aucune correction d'absorption n'a été effectuée.

Le coefficient moyen d'agitation thermique B_{M} évalué par la méthode de Wilson égal à 5,7 Å² est relativement élevé.

Détermination de la structure et affinement

La structure a été résolue par la méthode de la multisolution; les réflexions 4,3,18 (E = 3,81), 529 (E =4.02) et 5,0,16 (E = 4,15) ont été choisies pour définir l'origine. Les réflexions 2,1,13 (E = 2.25), 519 (E =2,76) et 1,1,28 (E = 3,57), utilisées comme symboles a, b, c, ont été nécessaires pour assurer le processus de convergence. Les sections de Fourier correspondant à l'ensemble des phases affinées le plus probable d'après les figures de mérite (parmi les huit possibles: a, b, c =0°, 180°) permettent d'identifier la partie centrale de la

Tableau 1. Coordonnées atomiques (×10⁴, pour H $\times 10^{3}$)

	x	у	z
C(1)	13141 (8)	215 (9)	6086 (2)
O(2)	11248 (5)	1012 (5)	6139 (1)
C(3)	10582 (7)	753 (6)	6511 (1)
C(4)	8739 (8)	1534 (7)	6545 (1)
C(5)	7908 (7)	1349 (7)	6909 (1)
C(6)	8904 (7)	355 (6)	7242 (1)
C(7)	10734 (9)	-389 (7)	7203 (2)
C(8)	11587 (8)	-210 (7)	6841 (1)
C(9)	8092 (8)	152 (7)	7640 (1)
N(10)	6494 (6)	868 (6)	7702 (1)
C(11)	5790 (7)	725 (6)	8094 (1)
C(12)	3910(7)	1473 (7)	8109 (1)
C(13)	3139 (8)	1543 (7)	8482 (2)
C(14)	4201 (7)	844 (6)	8855 (1)
C(15)	6044 (8)	64 (7)	8835 (1)
C(16)	6866 (8)	7 (7)	8463 (2)
C(17)	3523 (8)	963 (6)	9261 (1)
C(18)	1828 (8)	1717 (7)	9338 (1)
C(20)	1426 (8)	1813 (7)	9776 (1)
O(21)	2491 (6)	1280 (5)	10087 (1)
O(22)	-372 (5)	2596 (5)	9785 (1)
C(25)	-884 (9)	2824 (8)	10204 (2)
C(24)	-2976 (10)	3609 (10)	10155 (8)
H(101)	1412	23	639
H(201)	1390	90	586
H(301)	1288	109	597
H(104)	793	225	628
H(105)	649	196	694
H(107)	1150	-111	746
H(108)	1300	-81	682
H(109)	890	-66	788
H(112)	303	199	783
H(113)	165	209	848
H(115)	687	-50	911
H(116)	831	-60	846
H(117)	446	40	953
H(118)	82	225	908
H(123)	26	367	1037
H(223)	-69	164	1038
H(124)	-291	490	1004
H(224)	-403	288	993
H(324)	-350	361	1045

Fig. 1. Projections de la structure (a) suivant l'axe Oy et (b) suivant l'axe Ox.

molécule. Les atomes manquants notamment ceux des chaînes latérales ont été localisés ultérieurement.

L'affinement de la structure a été effectué en utilisant d'abord les coefficients d'agitation thermique isotrope B_i puis anisotrope B_{ij} selon le schéma simplifié des blocs diagonaux (programme dérivé de celui d'Ahmed); le facteur R est alors de 0,114. Tous les atomes d'hydrogène ont alors été introduits en position théorique;* l'affinement des coordonnées x, y, z et B_{ij} pour les seuls atomes C, N et O a alors été poursuivi. L'indice de reliabilité finale est R = 0,089;† les paramètres atomiques sont assemblés dans le Tableau 1; les projections de la structure suivant les axes Oy et Ox sont représentées sur la Fig. 1.‡

Description de la molecule

Distances et angles

Les longueurs des liaisons C-C, C=C, C=N, C-O et C=O et les angles de valence sont rassemblés avec leurs écarts-type dans le Tableau 2. Ils sont en assez bon accord avec ceux observés dans le cas du MBAMCP avec quelques différences peu significatives compte tenu des écarts-type plus élevés dans le cas présent. Toutefois la distance C(9)-N(10) est notablement plus courte pour MBACE, ce qui pourrait être attribué à la compacité cristalline plus élevée.

Le voisinage des atomes d'hydrogène du groupement méthyle et de l'atome d'hydrogène H(108) du cycle φ_1 impose une géométrie particulière au groupe *p*méthoxybenzyle avec un angle O(2)-C(3)-C(8) voisin de 125°. Ce phénomène a déjà été observé par nous pour le MBAMCP et par Galigné & Falgueirettes (1968) pour l'anisaldéhyde azine.

Plans moyens

On peut décomposer la molécule en groupes d'atomes situés dans un même plan. Nous donnons cidessous les équations des plans moyens et les écarts en Å à ces plans, des atomes voisins:

(1) Le premier groupe phényle φ_1

0,4361X + 0,8093Y + 0,3935Z = 10,0932C(1) -0,036; O(2) -0,018; C(9) 0,027 Å.

* Les distances C-H ont été prises égales à 1,07 Å pour les carbones sp^2 et 1,09 Å pour les carbones sp^3 , les angles C-C-H étant pris égaux à 120 et 109° respectivement, conformément aux résultats de la diffraction neutronique.

† Les listes des facteurs de structure et des facteurs d'agitation thermique ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32581: 11 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, Angleterre.

[‡] Par souci de clarté les atomes d'hydrogène n'ont pas été représentés sur ces projections (voir Fig. 3 pour leur numérotation).

Tableau 2. Longueurs de liaison (Å) et écarts-type (×10³), et angles de valence (°) et écarts-type (×10)

$\begin{array}{ccccc} C(1)-O(2) & 1,44\\ O(2)-C(3) & 1,35\\ C(3)-C(4) & 1,39\\ C(4)-C(5) & 1,37\\ C(5)-C(6) & 1,35\\ C(6)-C(7) & 1,37\\ C(7)-C(8) & 1,38\\ C(8)-C(3) & 1,38\\ C(6)-C(9) & 1,47\\ C(9)-N(10 & 1,24\\ N(10)-C(11) & 1,41\\ \end{array}$	H1 (7) 52 (5) 90 (7) 99 (7) 99 (7) 93 (7) 52 (7) 53 (7) 55 (6)	$\begin{array}{c} C(11)-C(12)\\ C(12)-C(13)\\ C(13)-C(14)\\ C(14)-C(15)\\ C(15)-C(16)\\ C(16)-C(11)\\ C(14)-C(17)\\ C(17)-C(18)\\ C(18)-C(20)\\ C(20)-O(21)\\ C(22)-C(23)\\ C(20)-O(22)\\ C(23)-C(24) \end{array}$	 1,388 (7) 1,377 (7) 1,393 (7) 1,392 (7) 1,394 (7) 1,394 (7) 1,450 (6) 1,450 (6) 1,364 (6) 1,504 (6)
$\begin{array}{c} C(1)-O(2)-C(3)\\ O(2)-C(3)-C(4)\\ O(2)-C(3)-C(8)\\ C(8)-C(3)-C(4)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(5)-C(6)-C(9)\\ C(5)-C(6)-C(9)\\ C(5)-C(6)-C(9)\\ C(6)-C(9)-N(10)\\ C(9)-N(10)-C(11)\\ N(10)-C(11)-C(12)\\ N(10)-C(11)-C(12)$	117,3 (5) 115,0 (5) 124,8 (5) 120,2 (5) 120,1 (5) 121,7 (5) 118,9 (5) 119,3 (5) 122,2 (6) 121,4 (5) 115,4 (5)	$\begin{array}{c} C(12)-C(13)-C(0)\\ C(13)-C(14)-C(0)\\ C(13)-C(14)-C(0)\\ C(17)-C(14)-C(0)\\ C(17)-C(14)-C(0)\\ C(14)-C(15)-C(0)\\ C(14)-C(17)-C(0)\\ C(14)-C(17)-C(0)\\ C(18)-C(20)-O(0)\\ C(18)-C(20)-O(0)\\ C(20)-C(20)-O(0)\\ C(20)-O(22)-C(0)\\ C(20)$	14) 121,2 (5) 17) 123,6 (5) 15) 117,5 (5) 15) 118,8 (5) 16) 121,7 (6) 11) 120,0 (6) 18) 126,5 (5) 20) 119,6 (5) 21) 126,7 (6) 22) 110,3 (5) 22) 123,0 (5) 23) 115,0 (5)
C(16)-C(11)-C(12) C(11)-C(12)-C(13)	125,9 (5) 118,6 (5) 121,0 (5)	C(22)-C(23)-C(23)-C(23)-C(23)-C(23)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)	24) 108,1 (5) 121,7 (6) 119,2 (6)

Les écarts au plan moyen des atomes de ce groupe sont inférieurs à 0,01 Å et ne sont donc pas significatifs. L'écart de l'atome C(1) est très faible.

(2) Le groupe C(6)–C(9)=N(10)–C(11)

0,4743X + 0,8063Y + 0,3580Z = 9,3301C(6) 0,016; C(9) -0,021; N(10) -0,013; C(11) 0,016. Ce groupement n'est qu'approximativement plan. (3) Le second groupe phényle φ_2

$$0,4327X + 0,8718Y + 0,2296Z = 6,1232.$$

Les écarts au plan moyen des atomes de ce groupe sont tous inférieurs à 0,01 Å.

(4) Le groupe carboxylique C(18)–C(20)–O(22)
$$O(21)$$

$$0,4612X + 0,8789Y + 0,1220Z = 3,0188.$$

Les écarts au plan moyen des atomes de ce groupe sont tous inférieurs à 0,01 Å.

Par contre le groupe d'atomes C(14)-C(17)=C(18)-C(20) n'est pas plan contrairement à ce que l'on observe pour MBAMCP; cela est peut-être dû à un arrangement beaucoup plus compact des molécules dans le cristal.

Conformation moléculaire

La conformation de la molécule de MBACE est entièrement décrite par les angles de torsion τ , autour de simples liaisons, ainsi définies: l'origine ($\tau = 0^{\circ}$) correspond à la position éclipsée, la rotation positive autour de la liaison correspondant au sens des aiguilles d'une montre, l'ensemble étant regardé dans le sens de la numérotation croissante. Pour l'un des énantiomères,* représentés sur la Fig. 2, la conformation est

* Les valeurs des angles de torsion sont de signes contraires pour l'autre énantiomère.

Fig. 2. Projections des molécules (a) de MBACE et (b) de MBAMCP sur le plan moyen du cycle φ_1 .

entièrement définie par les valeurs suivantes des angles de torsion: $\tau_1 = -1.4$, $\tau_2 = +3.0$, $\tau_3 = -8.7$, $\tau_4 = +5.1$, $\tau_5 = +178.3$, $\tau_6 = +175.9$, $\tau_7 = +176.7^{\circ}$.

Elle est assez proche de celle du MBAMCP sauf pour τ_3 et τ_4 : $\tau_1 = -1,7$, $\tau_2 = +3,0$, $\tau_3 = -36,1$, $\tau_4 = +20,8$, $\tau_5 = -172,2$, $\tau_6 = -178,7$, $\tau_7 = +176,1^\circ$ ($\tau_8 = -172,2^\circ$).

Le groupement ester éthylique terminal a une conformation quasi-étendue, les angles τ_5 , τ_6 et τ_7 étant tous proches de 180°.

La molécule de MBAMCP apparaît comme plus linéaire que celle de MBACE, les distances $C(1)\cdots C(24)$ y étant respectivement de 19,60 et 18,97 Å.

La valeur très faible de l'angle τ_3 , $-8,7^\circ$ seulement (les cycles φ_1 et φ_2 sont pratiquement coplanaires), la très courte distance H(109)…H(116) [2,00 Å seulement, au lieu de 2,34 Å pour la somme des rayons de van der Waals (Kitaigorodsky, 1973)], et la distorsion du groupement C(6)-C(9)=N(10)-C(11) présentement non plan, sont autant de preuves de la déformation de la molécule sous l'effet du champ cristallin. Ceci est en accord avec la densité plus élevée pour MBACE (d = 1,227 g cm⁻³) que pour MBAMCP (d = 1,174 g cm⁻³).

Arrangement moléculaire et interactions

Arrangement moléculaire

Les molécules sont disposées antiparallèlement les unes par rapport aux autres par l'intermédiaire des axes 2_1 , et allongées suivant une direction unique, cette dernière étant parallèle au plan xOz. De plus les molécules et notamment les cycles phényle sont pratiquement parallèles à ce plan. Ce type d'arrangement (I) a déjà été plusieurs fois rencontré aussi bien pour les composés nématogènes: 4,4'-azodiphénétole (Galigné, 1970), tolane TL2, que smectogènes: *p*-azoxybenzoate (Krigbaum & Barber, 1971), en partie pour DHP1* et se trouve représenté ci-dessous.

Une disposition différente (II) est adoptée par certains composés nématogènes seulement, avec toujours une direction unique d'allongement et des molécules antiparallèles mais avec leurs noyaux aromatiques sensiblement perpendiculaires. C'est le cas de DHP2 et du *p*-azoxyanisole (Krigbaum, Chatani & Barber, 1970).

Le MBAMCP nématogène pourrait constituer un cas particulier: les molécules y sont simplement associées par paires par l'intermédiaire de centres Ī; l'arrangement tridimensionnel résulte d'un assemblage de ces dimères en chevrons.

L'examen de la Fig. 1(a) et du Tableau 3 montre qu'il n'existe pas de liaison forte entre molécules voisines; en effet, la plupart des distances intermoléculaires les plus courtes sont légèrement inférieures à la somme des rayons de van der Waals et résultent de forces de dispersion. Deux distances apparaissent toutefois comme étant particulièrement courtes: d'une part entre l'oxygène O(2) du groupe ethyle terminal, d'autre part entre l'oxygène O(21) du groupe ethyle terminal, d'autre part entre l'oxygène H(115) et H(117) de groupements voisins.

Importance des interactions dipôle-dipôle

En fait la cohésion cristalline pourrait résulter de fortes interactions dipôle-dipôle entre groupements esters COO antiparallèles puisque se déduisant l'un de l'autre par l'intermédiaire des centres de symétrie I situés dans le plan yOz. Ces groupes sont situés à environ 3,6 Å l'un de l'autre. Nous avons déjà souligné le rôle possible des interactions dipôle-dipôle dans la cohésion cristalline pour le composé DHP3, successivement smectique et nématique; Krigbaum l'avait également évoqué dans le cas du p-azoxybenzoate d'éthyle smectique. Toute-

Tableau 3. Distances intermoléculaires (Å) inférieures les plus courtes d'après Kitaigorodsky

Les rayons de van der Waals seraient 1,17 Å pour H, 1,80 Å pour C, 1,57 Å pour O et 1,17 Å pour H. Code de symétrie: (i) x,y,z; (ii) \bar{x},\bar{y},\bar{z} ; (iii) $\bar{x}, \frac{1}{2} + y, \frac{1}{2} - z$; (iv) $x, \frac{1}{2} - y, -\frac{1}{2} + z$.

$C(17, i) \cdots H(224, i + a)$	2.89	$C(6, i) \cdots H(112, iii - a - c)$	2 95
$C(5,i)\cdots H(101,i-a)$	2,90	$C(9, i) \cdots H(112, iii - a - c)$	2,95
$C(18, i) \cdots H(223, ii + 2c)$	2,95	$C(1, i) \cdots H(123, iv + a - c)$	2,86
$C(20, i) \cdots H(223, ii + 2c)$	2,81	$O(21, i) \cdots H(115, ii + a + 2c)$	2,59
$C(20, i) \cdots H(124, ii + b + 2c)$	2,81	$O(21, i) \cdots H(117, ii + a + 2c)$	2,55
$C(24, i) \cdots H(124, ii + a + b + 2c)$	2,94	$O(2, i) \cdots H(123, ii + a + 2c)$	2,45

^{*} Dans DHP1 smectogène où les deux molécules indépendantes A et B de l'unité asymétrique ne sont qu'approximativement antiparallèles.

fois aucune approche quantitative de leur importance énergétique n'a jusqu'ici été entreprise. Une telle étude quantitative devrait permettre de rendre compte de l'importance de ces interactions. Nous avons vu que celles-ci résultent essentiellement des forces de dispersion. Les moments dipolaires locaux du groupement ester en particulier entraînent des forces électrostatiques importantes. La méthode empirique de calcul de conformation (Scheraga, 1968) permet de traduire l'effet des interactions intermoléculaires dans un milieu donné. C'est cette méthode que nous avons utilisée ici.

Considérant la molécule comme étant rigide nous avons évalué son énergie totale E_T en tenant compte uniquement de l'énergie de van der Waals E_{vw} et de l'énergie électrostatique E_{es} :

$$E_T = E_{\rm vw} + E_{\rm es}.$$
 (1)

L'énergie d'interaction de van der Waals a été calculée en utilisant la fonction potentiel de Lennard-Jones:

$$E_{\rm vw} = \sum_{i,j} - \frac{A_{ij}}{(R_{ij})^6} + \frac{B_{ij}}{(R_{ij})^{12}}.$$
 (2)

La sommation porte uniquement sur les couples d'atomes i et j ne formant pas une liaison. Les paramètres A_{ij} et B_{ij} tiennent compte de la nature des atomes i et j ainsi que de leur état d'hybridation. Les valeurs utilisées sont celles d'Hopfinger (1973). Les distances R_{ij} sont celles des résultats cristallographiques.

L'énergie électrostatique est obtenue à partir de l'expression:

$$E_{\rm es} = \sum_{i,j} 332 \frac{q_i q_j}{\varepsilon R_{ij}}.$$
 (3)

La constante diélectrique ε a été prise égale à 1, valeur couramment admise dans les calculs concernant les cristaux. q_i et q_j représentent les charges partielles portées par les atomes non liés *i* et *j*. Elles ont été calculées à partir de la méthode CNDO/2, avec le

Tableau 4. Répartition des charges partielles sur lamolécule de MBACE, obtenue par la méthode duCNDO/2

Les charges sur les atomes d'hydrogène ne sont pas mentionnées.

C(1)	+0,123	C(13)	+0,018
O(2)	-0,211	C(14)	+0,007
C(3)	+0,196	C(15)	+0,018
C(4)	-0,056	C(16)	-0,023
C(5)	+0,029	C(17)	+0,064
C(6)	-0,015	C(18)	-0,097
C(7)	+0,026	C(20)	+0,392
C(8)	-0,064	O(21)	-0,342
C(9)	+0,123	O(22)	-0,249
N(10)	-0,149	C(23)	+0,163
C(11)	+0,101	C(24)	-0,033
C(12)	-0,018		

formalisme et les paramètres originaux de Pople & Beveridge (1970). Le programme utilisé est le *CNIND*0 (Quantum Chemistry Program Exchange, n° 141). Nous avons rassemblé dans le Tableau 4 les valeurs numériques de ces charges pour la molécule de MBACE. Nous n'y avons pas mentionné les charges portées par les atomes d'hydrogène bien que celles-ci aient été incluses dans les calculs. Elles sont faibles si on les compare aux charges des atomes de carbone, d'azote et d'oxygène (de l'ordre de 10^{-2} à 10^{-3} en valeur absolue). La numérotation des atomes dans ce tableau correspond à la Fig. 2.

Si nous nous référons aux résultats cristallographiques nous constatons qu'une molécule de MBACE est en interaction avec de nombreuses autres molécules dans la maille. Le calcul énergétique complet d'un tel système met en jeu un nombre trop important d'atomes et d'orbitales moléculaires pour pouvoir être traité par la méthode décrite ci-dessus.

Cependant si nous considérons le système simplifié (sous-système) formé par les deux molécules de MBACE se déduisant l'une de l'autre par l'intermédiaire d'un centre de symétrie \overline{I} , appartenant au plan yOz, nous pouvons étudier l'interaction de ces molécules entre elles. Nous avons représenté sur la Fig. 3 les fragments de ces molécules en interaction.

Il s'agit d'une projection faite sur le plan moyen du groupement COO de la molécule I. L'énergie d'interaction de ces deux molécules s'obtient facilement. C'est la différence entre l'énergie du système considéré et l'énergie des molécules de MBACE isolées [énergies calculées suivant l'expression (1) avec une répartition des charges, obtenue par le CNDO/2, différente suivant qu'il s'agit du sous-système ou de la molécule isolée]. Nous obtenons ainsi une énergie d'interaction de -7,93kcal mol⁻¹. Cette valeur est élevée mais peut être justifiée par le fait qu'elle traduit la forte interaction entre les dipôles des groupements esters.

De plus, elle permet de supposer que l'interaction

Fig. 3. Projection du sous-système ('dimère') sur le plan moyen O(22)-C(20)-O(21) de la molécule I. L'origine des axes OX', OY' et OZ' est le centre d'inversion. L'échelle choisie est de 0,5 cm par Å.

dipolaire persisterait dans la phase smectique. Les deux molécules du sous-système peuvent donc être considérées comme constituant un dimère, les interactions entre dimères résultant essentiellement de forces de van der Waals.

Nous avons ensuite essayé d'étudier l'évolution du sous-système lorsque l'on déplace les deux molécules I et II, l'une par rapport à l'autre, dans les trois directions de l'espace définies sur la Fig. 3. Nous avons constaté que l'énergie d'interaction était minimale, pour la distance intermoléculaire observée dans le cristal, si on se déplaçait dans la direction OZ'. Par contre dans les deux autres directions, le minimum d'énergie est obtenu lorsque les molécules sont plus éloignées que dans le cristal. Il est difficile d'analyser de tels résultats en raison du modèle simplifié choisi. Cependant on peut y trouver une indication sur le déplacement éventuel des molécules lors du passage du cristal à la phase smectique.

Conclusion

La structure cristalline du MBACE, composé présentant des phases nématique et smectique, présente les caractéristiques suivantes. (i) Arrangement des molécules dans une direction unique. (ii) Association des molécules en dimères par l'intermédiaire de fortes interactions dipôle-dipôle entre groupements COO voisins. (iii) La cohésion cristalline est assurée essentiellement par des interactions de faible énergie entre ces dimères.

L'étude énergétique complète l'étude cristallographique par son apport quantitatif. Nous avons calculé l'énergie des dimères du MBACE et nous avons vu l'importance des interactions dipôle–dipôle. Le modèle considéré est toutefois très simple et ne permet pas actuellement de nous renseigner sur l'évolution du système lors du passage du cristal à la phase smectique, puis nématique. Cependant nous envisageons de développer une telle approche afin d'obtenir une interprétation quantitative de ce phénomène.

Références

- COTRAIT, M. (1975). Résultats non publiés.
- COTRAIT, M., DESTRADE, C. & GASPAROUX, H. (1975). Acta Cryst. B31, 2704–2706.
- COTRAIT, M., DESTRADE, C. & GASPAROUX, H. (1976). Mol. Cryst. Liq. Cryst. Sous presse.
- COTRAIT, M. & MARSAU, P. (1976). Acta Cryst. B32, 2993–2997.
- Соткан, М., Sy, D. & Ртак, М. (1975). Acta Cryst. B31, 1869–1874.
- GALIGNÉ, J. L. (1970). Acta Cryst. B26, 1977-1984.
- GALIGNÉ, J. L. & FALGUEIRETTES, J. (1968). Acta Cryst. B24, 1523–1529.
- GRAY, G. W. & HARRISON, K. J. (1971). Mol. Cryst. Liq. Cryst. 13, 37-60.
- HOPFINGER, A. J. (1973). Conformation Properties of Macromolecules, p. 47. New York: Academic Press.
- KITAIGORODSKY, A. I. (1973). Molecular Crystals and Molecules, pp. 10–18. New York: Academic Press.
- KRIGBAUM, W. R. & BARBER, P. G. (1971). Acta Cryst. B27, 1884–1889.
- KRIGBAUM, W. R., CHATANI, Y. & BARBER, P. G. (1970). Acta Cryst. B26, 97–102.
- LECLERCQ, M., BILLARD, J. & JACQUES, L. (1970). Mol. Cryst. Liq. Cryst. 10, 429-432.
- POPLE, J. A. & BEVERIDGE, D. L. (1970). Approximate Molecular Orbital Theory. New York: McGraw-Hill.
- SCHERAGA, H. A. (1968). Advanc. Phys. Org. Chem. 6, 103-184.

2832